MANNICH AND GRIGNARD REACTION OF SOME N-(2-PROPYNYL) AZAHETEROCYCLES

Alexandra Šilhánková, Michal Hoskovec, Radek Liboska and Miloslav Ferles

Department of Organic Chemistry,
Prague Institute of Chemical Technology, 16628 Prague 6

Received June 24, 1988
Accepted July 26, 1988

Abstract

1,4-Disubstituted butynes $I V-V I I$ were prepared by Mannich reaction of N -(2-propynyl) derivatives of $1,2,3,4$-tetrahydroquinoline, 1,2,3,4-tetrahydroisoquinoline, piperidine and azacycloheptane with polyoxymethylene and another heterocyclic amines. Reaction of 3-(1-piperi-dinyl)-1-propynylmagnesium bromide or 3-(1-azacycloheptyl)-1-propynylmagnesium bromide afforded alcohols $X-X I I I$.

Compounds of the general formulae I and $I I a, b$ have been the subject of many studies. Both free bases and quaternary salts of these acetylenic derivatives exhibit fungicidal, bactericidal ${ }^{1-4}$, hypotensive ${ }^{5}$ or hypnotic ${ }^{6}$ effects; some of them are corrosion inhibitors ${ }^{7}$. Parkinsonic, cholinergic and halucinogenic effects of tremorine and its homologues have been investigated ${ }^{8,9}$. Preparation and testing of other propynylamines are the result of the interest in new psychotropic compounds ${ }^{10}$. In this communication we describe the preparation of further compounds of the type IIa and IIb.

The so far described symmetrically substituted 1,4-bis(N -azaheterocyclic) 2-butyne derivatives $I I a$ were synthesized starting from 1,4-diiodo-2-butyne or 1,4-dichloro--2-butyne ${ }^{11-13}$; the best approach to unsymmetrically substituted derivatives was Mannich condensation of substituted propynes with polyoxymethylene and secondary amines (see e.g. refs ${ }^{14-16}$). The latter reaction was also employed by us in the preparation of compounds $I V-V I I$. We started from 1-(2-propynyl)piperidine, 1-(2-propynyl)azacycloheptane, 1-(2-propynyl)-1,2,3,4-tetrahydroquinoline or 2-(2-propynyl)-$-1,2,3,4$-tetrahydroisoquinoline, which on heating with an excess of polyoxymethylene and secondary amines (diethylamine, piperidine, pyrrolidine, morpholine, azacycloheptane, 1-methylpiperazine, 1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroisoquinoline) and with copper (II) acetate as catalyst in dioxane afforded butyne derivatives $I V-V I I$, listed in Table I. Compounds $I V a-c$ were also prepared without a catalyst or using only the stoichiometric ratio of the reactants. In both cases the yields were substantially lower. We also tried to prepare the Mannich bases IVd and Vd in the reversed manner, i.e. from 1-propynylazacycloheptane and 1,2,3,4-tetrahydroisoqui-

Table I
Physical and analytical data of compounds $I V-V I I$

Product Secondary amine	$\begin{aligned} & \text { B.p., }{ }^{\circ} \mathrm{C} / \mathrm{Pa} \\ & \text { Yield \% } \end{aligned}$	Formula(M.w.)	Calculated/Found		
			\% C	\% H	\% N
$1 V a^{a}$	130-133/130	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2}$	79.64	$9 \cdot 44$	10.92
diethylamine	80	(256.4)	$79 \cdot 63$	$9 \cdot 47$	$11 \cdot 17$
$I V b^{b}$	130-140/133	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2}$	$80 \cdot 27$	8.72	11.01
pyrrolidine	93	(254.4)	$80 \cdot 31$	8.86	11.09
$I V c^{c}$	115-135/130	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2}$	80.55	9.01	10.44
piperidine	60	(268.4)	$80 \cdot 38$	8.95	$10 \cdot 58$
IVd	165-172/27	$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2}$	$80 \cdot 80$	$9 \cdot 28$	$9 \cdot 92$
azacycloheptane	59	(282-4)	$80 \cdot 39$	$9 \cdot 52$	9.99
IVe	160-170/40	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$	75.52	8.20	$10 \cdot 36$
morpholine	39	(270.9)	$75 \cdot 88$	$8 \cdot 49$	$10 \cdot 38$
$I V f^{d}$	150-160/40	$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3}$	76.28	8.89	14.82
1-methylpiperazine	60	(283.4)	76.51	$8 \cdot 91$	$14 \cdot 60$
$V a$	130-136/40	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2}$	79.64	9.44	10.92
diethylamine	71	(256.4)	$79 \cdot 80$	9.43	$10 \cdot 78$
$V b$	160-175/40	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2}$	$80 \cdot 27$	$8 \cdot 72$	11.01
pyrrolidine	57	(254.4)	$80 \cdot 18$	9.00	11.26
$V c$	160-165/40	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2}$	80.55	9.01	$10 \cdot 44$
piperidine	73	(268-4)	$80 \cdot 32$	$9 \cdot 15$	$10 \cdot 17$
$V d$	$172-173 / 20$	$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2}$	$80 \cdot 80$	$9 \cdot 28$	9.92
azacycloheptane	84	(282.4)	$80 \cdot 80$	$9 \cdot 25$	$10 \cdot 10$
$V e$	160-178/40	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$	$75 \cdot 52$	$8 \cdot 20$	$10 \cdot 36$
morpholine	65	(270.4)	$75 \cdot 32$	8.44	$10 \cdot 34$
$V f$	170-180/40	$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3}$	76.28	8.89	14.82
1-methylpiperazine	71	(283.4)	$76 \cdot 34$	$9 \cdot 16$	14.71
$V I a$	115-118/40	$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2}$	77.01	$10 \cdot 16$	12.83
1,2,3,6-tetrahydropyridine	37	(218.3)	76.78	$10 \cdot 49$	$12 \cdot 83$
$V I b$	122-123/13	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}$	76.87	$11 \cdot 18$	11.95
azacycloheptane	73	(234.4)	76.95	11.31	12.24
VIIa	137-139/120	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2}$	77.53	10.41	12.06
1,2,3,6-tetrahydropyridine	52	(232.4)	77.64	10.71	11.79
$V I I b$	140-146/110	$\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{3}$	$72 \cdot 24$	10.91	16.85
1-methylpiperazine	32	(249-4)	$72 \cdot 26$	10.94	16.99
$I V g$	220/40 ${ }^{\text {e }}$	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2}{ }^{\mathrm{f}}$			
1,2,3,4-tetrahydroisoquinoline	65	(316.4)			

noline or $1,2,3,4$-tetrahydroquinoline; however, these reactions led to more complex mixtures of bases. With $1,2,3,6$-tetrahydropyridine, the general method of preparation of 1-(2-propynyl)azaheterocycles from the corresponding amine and 3-bromopropyne

III

N
In formulae N and $V: a, R=$ diethylamino

V
b, $R=1-$ pyrrolidinyl
$c, R=1$-piperidinyl $\quad d, R=1$-azacycloheptyl $\quad e, R=4$-morpholinyl
f, $\mathrm{R}=1$-(4-methylpiperazinyl) $\quad g, \mathrm{R}=2-(1,2,3,4$-tetrahydroisoguinolinyl)

$V / a, R=1-(1,2,3,6$-tetrahydropyridinyl)
$\forall / b, R=1-a z a c y c l o h e p t y l$

$V / l a, R=1-(1,2,3,6$-tetrahydropyridinyl)
VII b, $\mathrm{R}=1$ - (4-methylpiperazinyl)
${ }^{a}$ IVa. $2 \mathrm{CH}_{3} \mathrm{I}$, m.p. $115-117^{\circ} \mathrm{C}$ (2-propanol; for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{I}_{2} \mathrm{~N}_{2}$ (540.2) calculated: $46.98 \% \mathrm{I}$, $5 \cdot 19 \% \mathrm{~N}$; found: $46.73 \% \mathrm{I}, 5.08 \% \mathrm{~N}$; ${ }^{b}$ Vb. $2 \mathrm{CH}_{3} \mathrm{I}$, m.p. $209 \cdot 5-210 \cdot 5^{\circ} \mathrm{C}$ (2-propanol), for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{I}_{2} \mathrm{~N}_{2}$ (538.3) calculated: $47.15 \% \mathrm{I}, 5 \cdot 20 \% \mathrm{~N}$; found: $47.07 \% \mathrm{I}, 5.22 \% \mathrm{~N} ;{ }^{c}$ IVc. $2 \mathrm{CH}_{3} \mathrm{I}$, m.p. $210-211^{\circ} \mathrm{C}$ (2-propanol), for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{I}_{2} \mathrm{~N}_{2}$ ($552 \cdot 3$) calculated: $45.95 \% \mathrm{I}, 5.07 \% \mathrm{~N}$; found: $46.07 \% \mathrm{I}, 5.08 \% \mathrm{~N}$; ${ }^{d}$ Vf. $2 \mathrm{CH}_{3} \mathrm{I}$, m.p. $123-125^{\circ} \mathrm{C}$ (2-propanol), for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{I}_{2} \mathrm{~N}_{3}$ (567.3) calculated: $44.74 \% \mathrm{I}, 7.07 \% \mathrm{~N}$; found: $44.86 \% \mathrm{I}, 7.15 \% \mathrm{~N} ;{ }^{e}$ bath temperature, m.p. $55^{\circ} \mathrm{C}$; ${ }^{f}$ mass spectrum ($m / z, \%$ r.i.) $317\left(\mathrm{M}_{+}^{+}+1\right)(19), 211(60), 183(68), 132(95), 104(100), 78(50), 53(65)$, 42 (50).
did not give the tertiary amine but instead directly the quaternary salt, $1,1-\mathrm{di}(2-$ -propynyl)-1,2,3,6-tetrahydropyridinium bromide (VIII). Thus, even in this case it was not possible to prepare the bases VIa and VIIa in the reversed manner.

Some authors investigated the preparation of amino alcohols $I I b\left(R^{\prime} N=\right.$ piperidinyl). Reaction of acetylenes with ketones or aldehydes gave first alkynols or their esters which in Mannich reaction with polyoxymethylene and piperidine in the presence of copper(II) acetate afforded alcohols IIb, usually in good yields ${ }^{17-20}$. Another approach to these alcohols consists in reaction of substituted propynylmagnesium bromides with carbonyl compounds. In the series of N -azaheterocyclic compounds, the reaction of 3-(1-azacycloheptyl)propynylmagnesium bromide with ethyl orthoformate ${ }^{21}$ or of 3-(1-azacycloheptyl)propynylmagnesium bromide with polyoxymethylene ${ }^{22}$ has been described. Hennion and Campbell ${ }^{23}$ prepared acetylenic 1,4-amino alcohols from substituted acetylenic amines by treatment with lithium or sodium amide in ammonia or with ethylmagnesium bromide in ether, followed by reaction with carbonyl compounds, the yields varying considerably. However, no reaction with heterocyclic amines has been carried out as yet.

Whereas we did not succeed in isolation of products when the conversion of acetylenes into acetylides was carried out with alkyllithium compounds (ethyllithium, butyllithium), reactions performed with ethylmagnesium bromide in tetrahydrofuran gave the desired products. We carried out the reaction of 3-(1-piperi-dinyl)-1-propynylmagnesium bromide with several aldehydes. Reaction with butanal afforded the liquid alcohol $X a$; with benzaldehyde, 4-dimethylaminobenzaldehyde, 2-furaldehyde, 2- and 3-thiophenecarbaldehyde and 3-pyridinecarbaldehyde we obtained colourless crystalline alcohols $X b-g$, along with some polymeric material which (according to NMR spectra) did not contain any aromatic protons. The reactions were carried out in tetrahydrofuran. With ether as solvent, the formation of polymeric compounds was also observed; in the case of reaction with benzaldehyde in ether we did not succeed to separate the product from the unreacted components. Alcohol $X b$ was converted into its acetyl derivative $X h$ by treatment with acetic anhydride in pyridine under catalysis with 4-dimethylaminopyridine. Without this catalyst the reaction proceeded only very sluggishly.

Under the same conditions, reaction of 3-(1-piperidinyl)-1-propynylmagnesium bromide with ketones gave complex mixtures of products as shown by GLC and TLC analyses. Alcohol XIa, obtained by reaction with acetone, was isolated by fractionation in vacuo, alcohol $X I b$ from the reaction with cyclopentanone was purified by column chromatography. Since the oily residue could not be obtained free of the solvent under mild conditions, the alcohol XIb was converted into its crystalline methiodide.

Similarly, from azacycloheptane we prepared 3-(1-azacycloheptyl)-1-propynylmagnesium bromide which on reaction with butanal and cyclopentanone afforded
the respective alcohols $X I I a$ and $X I I b$. Analogously to its piperidine derivative, the alcohol $X I I b$ was isolated, after chromatography, as the methiodide.

$\because, R=$ propyl $; \quad R^{\prime}=H$
*o, $R=$ phenyl $; R^{\prime}=H$
$x_{0}, R=4$-dimethylaminophenyl; $R^{\prime}=H$
Yd, $R=2$-furyl; $R^{\prime}=H$
$X_{e}, R=2$-thienyl $R^{\prime}=H$
$x_{f}, \mathrm{R}=3$-thienyl; $\mathrm{R}^{\prime}=\mathrm{H}$
$X_{g}, R=3$-pyridinyl; $R^{\prime}=H$
Y.h, $R=$ phenyl $; R^{\prime}=$ acetyl

Xia, $\mathrm{R}=\mathrm{R}^{\prime}=$ metriyl
$X \mid b, R, R^{\prime}=$ tetramethylene
$X / c, R=3$-pyridinyl; $R^{\prime}=3-(1$-piperidinyl)-1-propyn-1-yl
XId, $R=4$-pyridinyl; $R^{\prime}=3$-(1-piperidinyl)-1-propyn-1-yl
$X / e, R=H ; R^{\prime}=3$-(1-piperidinyl)-1-propyn-1-yl

$$
\begin{aligned}
& X / l a, R^{\prime}=H ; R=\text { propyl } \\
& \text { XIIS, } \mathrm{R}^{\prime}, \mathrm{R}=\text { tetramethylene }
\end{aligned}
$$

3-(1-Piperidinyl)-1-propynylmagnesium bromide also reacted with some esters. Reaction with ethyl 3-pyridinecarboxylate, ethyl 4-pyridinecarboxylate and diethyl

Table II

Physical and analytical data of compounds $X-X I I I$

Product	M.p., ${ }^{\circ} \mathrm{C}$ (b.p., $\left.{ }^{\circ} \mathrm{C} / \mathrm{Pa}\right)$ (solvent) $\%$	Formula (M.w.)	Calculated/Found		
			$\% \mathrm{C}$	$\% \mathrm{H}$	$\% \mathrm{~N}$

$X a$	(120/27)	$\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}$	$73 \cdot 80$	$10 \cdot 84$	$7 \cdot 17$
44		(195.3)	73.77	11.09	$7 \cdot 24$
$X b$	112.5-113	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}$	78.56	$8 \cdot 35$	$6 \cdot 11$
33	(cyclohexane)	(229-3)	$78 \cdot 67$	$8 \cdot 38$	5.91
$X c$	95-98	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$	74.96	$8 \cdot 88$	10.28
6	(cyclohexane)	(272.4)	74.98	8.94	10.05
$X d$	$99.5-100 \cdot 5$	$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$	70.98	7.76	$6 \cdot 31$
38	(cyclohexane)	(219.3)	$70 \cdot 90$	$7 \cdot 74$	$6 \cdot 29$
$X e$	122	$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NOS}$	$66 \cdot 34$	$7 \cdot 28$	$5 \cdot 95^{\text {a }}$
54	(benzene)	(235-3)	$66 \cdot 10$	$7 \cdot 27$	$5 \cdot 77$
$X f$	124-125	$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NOS}$	$66 \cdot 34$	$7 \cdot 28$	$5.95{ }^{\text {b }}$
36	(cyclohexane)	(235-3)	$66 \cdot 49$	$7 \cdot 27$	5.93
$X g$	98-99	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$	73.01	$7 \cdot 88$	$12 \cdot 16$
41	(cyclohexane)	(230-3)	72.95	$7 \cdot 88$	12.08
Xh	$(140 / 6 \cdot 7)^{c}$	$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$	75.25	7.80	$5 \cdot 16$
46		(271.4)	75.06	7.85	$5 \cdot 18$
XIIa	$(120-122 / 67)$	$\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}$	74.59	11.08	$6 \cdot 69$
52		(209-3)	74.58	$11 \cdot 12$	$6 \cdot 78$
$X I b$	156-158 ${ }^{\text {d }}$	$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{INO}$	$48 \cdot 15$	6.93	4.01
41	(2-propanol-ethyl acetate)	(349-2)	48-12	$6 \cdot 86$	3.71
XIc	205-207 ${ }^{\text {e }}$	$\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{I}_{3} \mathrm{~N}_{3} \mathrm{O}$	38.63	$4 \cdot 93$	5.41
34	(ethanol-water)	(777.3)	38.08	$4 \cdot 88$	$5 \cdot 28$
XId	146	$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}$	$75 \cdot 18$	$8 \cdot 32$	11.95
85	(cyclohexane-ethyl acetate)	(351.5)	74.80	8.29	11.80
Xle	170^{f}	$\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}$	$40 \cdot 88$	5.78	$5 \cdot 02$
24	(methanol)	(558.3)	41.02	$5 \cdot 74$	$4 \cdot 90$
XIa	$(120-123 / 530)^{g}$				
XIIb	179.5^{h}	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{INO}$	49.59	$7 \cdot 21$	3.86
40	(2-propanol-ethyl acetate)	(363.3)	$49 \cdot 68$	$7 \cdot 18$	$3 \cdot 58$
XIII	110-112	$\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{2}$	75.08	8.56	11.23
24		(623.9)	73.96	$8 \cdot 33$	$10 \cdot 90$
XIII ${ }^{\text {i }}$	$180-190$	$\mathrm{C}_{43} \mathrm{H}_{65} \mathrm{I}_{4} \mathrm{~N}_{5} \mathrm{O}_{2}$	42.06	$5 \cdot 62$	5.70
	(ethanol)	(1 192)	$42 \cdot 40$	$5 \cdot 42$	$5 \cdot 78$

[^0]2,6-pyridinedicarboxylate afforded alcohols XIc,d and XIII; analogously, ethyl formate gave alcohol XIe. Except the alcohol XId which was obtained in the crystalline state directly from the crude reaction mixture, the other products were again isolated by column chromatography and then converted into the corresponding methiodide.

The structure of all the new compounds has been confirmed by ${ }^{1} \mathrm{H}$ NMR spectra (Tables III and IV) in which the signals were distributed over a wide range and were easily assigned. For structurally similar compounds, the chemical shifts of the corresponding types of protons agreed well. 2-(2-Propynyl)-1,2,3,4-tetrahydroisoquinoline (IX) was prepared by reaction of 1,2,3,4-tetrahydroisoquinoline with 3-bromopropyne in the presence of potassium carbonate in butanone or by reduction of 2-(2-propynyl)isoquinolinium bromide with sodium borohydride; reduction of the latter compound with potassium formate in formic acid led to a complex mixture of products. For the preparation of 1-(2-propynyl)piperidine we also used the more accessible 3-chloropropyne.

EXPERIMENTAL

${ }^{1} \mathrm{H}$ NMR spectra were measured on a Bruker AM $400(400 \cdot 133 \mathrm{MHz})$ instrument in deuterochloroform or p erdeuteromethanol with tetramethylsilane as internal standard. IR spectra were recorded on a Perkin-Elmer 325 spectrophotometer in chloroform, mass spectra on a Jeol DX 303/DA 5000 spectrometer. Gas-liquid chromatography (GLC) was carried out on a Chrom 5 chromatograph (flame-ionization detector) on $2500 \times 3 \mathrm{~mm}$ columns packed with 3% OV 225 on Chromaton N-AW-DMCS, carrier gas nitrogen. Thin-layer chromatography (TLC) was performed on Silufol UV 254 foils in benzene-ethanol ($9: 1$) or chloroform-ethanol ($9: 1$).

1-(2-Propynyl)piperidine ($I, \mathrm{RR}^{\prime} \mathrm{N}=$ piperidinyl)

1-(2-Propyryl) chloride ($74.5 \mathrm{~g} ; 1 \mathrm{~mol}$) was added dropwise to a stirred solution of piperidine ($170 \mathrm{~g} ; 2 \mathrm{~mol}$) in dry diethyl ether (480 ml). After refluxing for 10 h , the separated piperidine hydrochloride ($98.2 \mathrm{~g} ; 81 \%$) was filtered off. Most of the ether was distilled off through a column and another portion of piperidine hydrochloride ($7.6 \mathrm{~g} ; 6 \%$) was removed by filtration. The remaining liquid residue was distilled as rapidly as possible at 1.5 kPa . The obtained distillate was then redistilled through a column. The principal fraction, boiling at $51^{\circ} \mathrm{C} / 1.5 \mathrm{kPa}(61.8 \mathrm{~g}$; 50%), was shown by GLC to be completely pure 1-(2-propynyl)piperidine; a lower-boiling fraction was collected ($8 \mathrm{~g} ; 6 \%$) which contained the product with less than 2% of piperidine. (The rapid distillation separates the product from the dissolved piperidine hydrochloride which decomposes on longer heating of the crude mixture and the distillate then contains piperidine even in the higher-boiling fractions).

2-(4-(1-Piperidinyl)-2-butynyl)-1,2,3,4-tetrahydroisoquinoline (IVc)
A mixture of base $I X(3.0 \mathrm{~g} ; 17.5 \mathrm{mmol})$, polyoxymethylene $(5.3 \mathrm{~g} ; 175 \mathrm{mmol})$, piperidire (3.0 g ; 35 mmol), copper(II) acetate monohydrate (25 mg) ard dioxane (10 ml) was gently refluxed for 16 h . The reaction mixture was decomposed with water (100 ml) ard extracted three times with ether ($50-60 \mathrm{ml}$ portions). After dryirg over sodium sulfate, the solvent was evaporated and

Table III
${ }^{1} \mathrm{H} N \mathrm{NR}$ spectra of compounds $I V-V I I\left(\delta, \mathrm{CDCl}_{3}\right)$

	H-1	H-2	H-3	H-4	H-5	H-6	H-7,8,9	Other signals
IVa	$\begin{gathered} 3.46 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 3.51 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 3.74 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 2 \cdot 93 \mathrm{t} \\ 2 \mathrm{H} \\ J(4,5)=6 \end{gathered}$	$\begin{gathered} 2 \cdot 81 \mathrm{t} \\ 2 \mathrm{H} \\ J(5,4)=6 \end{gathered}$	$\begin{gathered} 6.95-7.08 \mathrm{~m} \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} 7.01-7.15 \mathrm{~m} \\ 3 \mathrm{H} \end{gathered}$	$\begin{aligned} & 2.54 \mathrm{q}, 4 \mathrm{H}\left(\mathrm{~J}=7.2,22 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \\ & 1.06 \mathrm{t}, 6 \mathrm{H}\left(\mathrm{~J}=7.2,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2}\right) \end{aligned}$
IVb	$\begin{gathered} 3.45 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 2.54 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 3.78 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 2 \cdot 96 \mathrm{t} \\ 2 \mathrm{H} \\ J(4,5)=6 \end{gathered}$	$\begin{gathered} 2 \cdot 86 \mathrm{t} \\ 2 \mathrm{H} \\ J(5,4)=6 \end{gathered}$	$\begin{gathered} 6.97-7.09 \mathrm{~m} \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} 7 \cdot 00-7 \cdot 18 \mathrm{~m} \\ 3 \mathrm{H} \end{gathered}$	$\begin{aligned} & 2.52-2.69 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right) ; \\ & 1.68-1.88 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right) \end{aligned}$
IVc	$\begin{gathered} 3.32 \mathrm{t} \\ 2 \mathrm{H} \\ J=2 \end{gathered}$	$\begin{gathered} 3.53 \mathrm{t} \\ 2 \mathrm{H} \\ J=2 \end{gathered}$	$\begin{gathered} 3.75 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 2 \cdot 92 \mathrm{t} \\ 2 \mathrm{H} \\ J(4,5)=6 \end{gathered}$	$\begin{gathered} 2.83 \mathrm{t} \\ 2 \mathrm{H} \\ J(5,4)=6 \end{gathered}$	$\begin{gathered} 6.97-7.05 \mathrm{~m} \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} 7.05-7.19 \mathrm{~m} \\ 3 \mathrm{H} \end{gathered}$	$\begin{aligned} & 2.37-2.60 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; \\ & 1.48-1.65 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; \\ & 1.34-1.50 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathbf{C H}_{2}\right) \end{aligned}$
IVd	$\begin{gathered} 3.42 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 3.55 \mathrm{t} \\ 2 \mathrm{H} \\ J=1.9 \end{gathered}$	$\begin{gathered} 3.78 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 2.96 \mathrm{t} \\ 2 \mathrm{H} \\ J(4,5)=5.8 \end{gathered}$	$\begin{gathered} 2.85 \mathrm{t} \\ 2 \mathrm{H} \\ J(5,4)=5 \cdot 8 \end{gathered}$	$\begin{gathered} 7.02-7.05 \mathrm{~m} \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} 7.03-7.11 \mathrm{~m} \\ 3 \mathrm{H} \end{gathered}$	$\begin{aligned} & 2.71 \mathrm{t}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}, J=5.6\right) ; \\ & 1.64-1.75 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; \\ & 1.56-1.67 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) \end{aligned}$
IVe	$\begin{gathered} 3.31 \mathrm{t} \\ 2 \mathrm{H} \\ J=2 \end{gathered}$	$\begin{gathered} 3.52 \mathrm{t} \\ 2 \mathrm{H} \\ J=2 \end{gathered}$	$\begin{gathered} 3.74 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 2.93 \mathrm{t} \\ 2 \mathrm{H} \\ J(4,5)=5.9 \end{gathered}$	$\begin{gathered} 2.82 \mathrm{t} \\ 2 \mathrm{H} \\ J(5,4)=5.9 \end{gathered}$	$\begin{gathered} 6.95-7.04 \mathrm{~m} \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} 7.04-7.18 \mathrm{~m} \\ 3 \mathrm{H} \end{gathered}$	$\begin{aligned} & 2.55 \mathrm{t}, 4 \mathrm{H}\left(\mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2}, J=4.5\right) ; \\ & 3.65-3.72 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right) \end{aligned}$
IVf	$\begin{gathered} 3.38 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 3.53 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 3.65 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 2 \cdot 95 \mathrm{t} \\ 2 \mathrm{H} \\ J(4,5)=6 \end{gathered}$	$\begin{gathered} 2 \cdot 83 t \\ 2 \mathrm{H} \\ J(5,4)=6 \end{gathered}$	$\begin{gathered} 6.95-7.03 \mathrm{~m} \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} 7.00-7.18 \mathrm{~m} \\ 3 \mathrm{H} \end{gathered}$	$\begin{aligned} & 2.32 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{~N}_{-} \mathrm{CH}_{3}\right) ; 2.35-2.78 \mathrm{~m}, \\ & 8 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) \end{aligned}$
IVg		$\begin{gathered} 3.55 \mathrm{~s} \\ 4 \mathrm{H} \end{gathered}$	$\begin{gathered} 3.78 \mathrm{~s} \\ 4 \mathrm{H} \end{gathered}$	$\begin{gathered} 2 \cdot 95 \mathrm{t} \\ 4 \mathrm{H} \\ J(4,5)=6 \end{gathered}$	$\begin{gathered} 2.85 \mathrm{t} \\ 4 \mathrm{H} \\ J(5,4)=6 \end{gathered}$	$\begin{gathered} 7.00-7.09 \mathrm{~m} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 7.07-7.20 \mathrm{~m} \\ 6 \mathrm{H} \end{gathered}$	

Va	$3 \cdot 35$ t	4.00 t	$3.26 t$	1.99 m	2.75 t	6.72 d	$6.64 \mathrm{t} J=7.70 .99 \mathrm{t}, 6 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, J=7.2\right)$,
	2 H	2 H	2 H	2 H	2 H	1 H	$7.04 \mathrm{t} \quad J=7.82 .43 \mathrm{q}, 4 \mathrm{H}$
	$J=1.9$	$J=1.9$	$J=5.7$		$J=6.5$	$J=8.2$	$6.94 \mathrm{~d} J=8.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, J=7.2\right)$
$V b$	3.36 t	4.02 t	$3 \cdot 28$ t	2.00 m	$2 \cdot 75$ t	6.73 d	$6.65 \mathrm{t} \quad \mathrm{J}=7.72 .47-2.60 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$,
	2 H	2 H	2 H	2 H	2 H	1 H	$7.06 \mathrm{t} \quad J=8.5 \quad 1.69-1.82 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$
	$J=1.9$	$J=1.9$	$J=5 \cdot 7$		$J=6.5$	$J=8 \cdot 1$	$6.96 \mathrm{~d} J=7.3$
$V c$	$3 \cdot 32$ t	4.07 t	3.25 t	2.03 m	$2 \cdot 80 \mathrm{t}$	6.78 d	$6.70 \mathrm{t} \quad J=7.31 .35-1.52 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right)$,
	2 H	2 H	2 H	2 H	2 H	1 H	$7.13 \mathrm{t} J=8.51 .56-1.71 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$
	$J=1.9$	$J=1.9$	$J=6.5$		$J=6.5$	$J=8 \cdot 1$	$7.00 \mathrm{~d} J=7.42 .35-2.55 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$
$V d$	3.28 t	3.99 t	3.25 t	1.99 m	2.73 t	6.73 d	$6.64 \mathrm{~mJ}=8.21 .50-1.58 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$
	2 H	2 H	2 H	2 H	2 H	1 H	$7.06 \mathrm{~m} \quad 1.53-1.68 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$,
	$J=2$	$J=2$	$J=5 \cdot 8$		$J=6 \cdot 5$	$J=8.2$	$6.95 \mathrm{~d} J=7.52 .55 \mathrm{t}, 4 \mathrm{H}\left(\mathrm{NCH}_{2}, J=5\right)$
$V e$	3.23 t	4.03 t	3.28 t	1.99 m	2.76 t	6.72 d	$6.66 \mathrm{t} \quad J=7.32 .48 \mathrm{t}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}, J=4.5\right)$
	2 H	2 H	2 H	2 H	2 H	1 H	$7.08 \mathrm{t} \quad J=8.23 .69 \mathrm{t}, 4 \mathrm{H}\left(\mathrm{OCH}_{2}, J=4.6\right)$
	$J=1.9$	$J=1.8$	$J=5 \cdot 7$		$J=6.5$	$J=7 \cdot 3$	$6.97 \mathrm{~d} J=7.3$
Vf	$3 \cdot 24$ t	4.02 t	3.27 t	1.99 m	2.75 t	6.72 d	$6.65 \mathrm{t} \quad J=7.42 .35-2.65 \mathrm{~m}, 8 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$
	2 H	2 H	2 H	2 H	2 H	1 H	$7.08 \mathrm{t} \quad J=8.32 .28 \mathrm{~s}\left(\mathrm{NCH}_{3}\right)$
	$J=1.8$	$J=1.8$	$J=5.7$		$J=6 \cdot 5$	$J=8 \cdot 3$	$6.96 \mathrm{~d} J=7.3$
VIa	3.41 t	$3 \cdot 14$ t	2.48 m	$1.58-1.67 \mathrm{~m}$	1.42 m		$2 \cdot 18-2.25 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right)$
	2 H	2 H	4 H	4 H	2 H		$2.65 \mathrm{t}, 2 \mathrm{H}(J=5.7)$
	$J=1.9$	$J=1.9$					$\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right) ; 3.06-3.13 \mathrm{~m}$ $\left(\mathrm{NCH}_{2} \mathrm{C}=\right.$) $5.71 \mathrm{~m}(\mathrm{CH}=\mathrm{CH})$
$V I b$	3.38 s	3.28 s	2.49 m	$1.53-1.65 \mathrm{~m}$	1.41 m		$1.53-1.65 \mathrm{~m}, 8 \mathrm{H}$
	2 H	2 H	4 H		2 H		($\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ - and $\mathrm{H}-4$)
					.		$1.65-1.74 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$
							$2.64-2.74 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$

Table III
(Continued)

	H-1	H-2	H-3	H-4	H-5	H-6	H-7,8,9	Other signals
VIIa	3.41 t	$3 \cdot 39$ t	2.64 -	1.65-1.73	$1.56-1.67 \mathrm{~m}$			$2.64-2.74 \mathrm{~m}, 6 \mathrm{H}$ ($\mathrm{H}-3$ and
	$\begin{gathered} 2 \mathrm{H} \\ J=1.9 \end{gathered}$	$\begin{gathered} 2 \mathrm{H} \\ J=1.9 \end{gathered}$	2.74 m	4 H	4 H			$\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=$); $2 \cdot 18-2.26 \mathrm{~m}$ $2 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}==\right)$;
								$\begin{aligned} & 3.07-3 \cdot 12 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH} \Rightarrow\right) \\ & 5.70 \mathrm{~m}(\mathrm{CH}=\mathrm{CH}) \end{aligned}$
$V I I b$	$3 \cdot 32$ t	$3 \cdot 37$ t	$\begin{aligned} & 2.65- \\ & 2.73 \mathrm{~m} \end{aligned}$	$1.65-1.73 \mathrm{~m}$	$1.56-1.67 \mathrm{~nm}$			$\begin{aligned} & 2.28 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 2.40-2.66 \mathrm{~m} \\ & 8 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) \end{aligned}$
	$\begin{gathered} 2 \mathrm{H} \\ J=1.9 \end{gathered}$	$\begin{gathered} 2 \mathrm{H} \\ J=1.9 \end{gathered}$	4 H	4 H	4 H			

the residue fractionated in vacuo, the distillate being analyzed by GLC. Fraction of b.p. 115 to $135^{\circ} \mathrm{C} / 130 \mathrm{~Pa}(2.8 \mathrm{~g} ; 60 \%$) consisted of the pure base $I V c$ (for data see Tables I and III). Analogously were prepared the amines IVa, $b, d-g, V a-f, V I a, b, V I I a, b$.

1,1-Di(2-propynyl)-1,2,3,6-tetrahydropyridinium Bromide (VIII)

A mixture of 3 -bromopropyne ($4.6 \mathrm{~g} ; 39 \mathrm{mmol}$), $1,2,3,6$-tetrahydropyridine $(5.8 \mathrm{~g} ; 70 \mathrm{mmol}$) and butanone (30 ml) was refluxed for 6 h . The separated yellow crystals were collected and washed with butanone and ether. Two crystallizations from 2 -propanol afforded $4.1 \mathrm{~g}(88 \%)$ of colourless crystals of quaternary salt VIII, m.p. $179-180^{\circ} \mathrm{C}$. For $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrN}$ ($240 \cdot 1$) calculated: $55.02 \% \mathrm{C}, 5.88 \% \mathrm{H}, 5.83 \% \mathrm{~N}$; found: $55.13 \% \mathrm{C}, 5.89 \% \mathrm{H}, 5.77 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\delta,\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): 2.50 \mathrm{t}, 2 \mathrm{H}(J=2 \cdot 4, \mathrm{C} \equiv \mathrm{CH}) ; 3.75 \mathrm{t}, 2 \mathrm{H}\left(J=6 \cdot 2, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right) ; 4.14$ to $4.22 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}=\right) ; 4.47-4.62 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{C} \equiv \mathrm{C}\right) ; 5.76 \mathrm{~d}, 1 \mathrm{H}\left(J=10.5, \mathrm{NCH}_{2} \mathrm{CH}=\right)$; $6.03 \mathrm{~d}, 1 \mathrm{H}\left(J=10.5, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}\right)$.

2-(2-Propynyl)-1,2,3,4-tetrahydroisoquinoline (IX)

A) A solution of 3-bromopropyne ($4.4 \mathrm{~g} ; 38 \mathrm{mmol}$) in butanone (10 ml) was added dropwise to a stirred mixture of $1,2,3,4$-tetrahydroisoquinoline ($5 \cdot 0 \mathrm{~g} ; 38 \mathrm{mmol}$) in butanone (20 ml) and p tassium carbonate ($5.7 \mathrm{~g} ; 41 \mathrm{mmol}$). The mixture was refluxed for 5 h , the solid was filtered and washed with butanone. The butanone was distilled off in vacuo and then the residue (8.9 g) was distilled, affording $5.1 \mathrm{~g}(80 \%)$ of colourless liquid, b.p. $99-105^{\circ} \mathrm{C} / 130 \mathrm{~Pa}$, identical with the pure product prepared according to procedure B).
B) A mixture of isoquinoline ($150 \mathrm{~g} ; 1.15 \mathrm{~mol}$), 3 -bromopropyne ($140.0 \mathrm{~g} ; 1.20 \mathrm{~mol}$) and benzene (500 ml) was allowed to stand at room temperature for 8 days. The solid was filtered, washed with benzene and acetone to give crude quaternary salt ($250.0 \mathrm{~g} ; 87 \%$), m.p. $171-173^{\circ} \mathrm{C}$ after crystallization from 2-propanol.

To a cooled solution of this quaternary salt ($100 \mathrm{~g} ; 0.40 \mathrm{~mol}$) in ethanol (1000 ml) was gradually added at $5^{\circ} \mathrm{C}$ a suspension of sodium borohydride $(45.6 \mathrm{~g} ; 1.20 \mathrm{~mol})$ in ethanol (500 ml). After addition of the whole amount of the hydride, the reaction mixture was stirred at $15^{\circ} \mathrm{C}$ for 7 h . Part of the ethanol (1000 ml) was then distilled off, the residue was mixed with water (500 ml) and the mixture was extracted with ether ($3 \times 400 \mathrm{ml}$). The combined ethereal layers were dried over magnesium sulfate, the solvent was evaporated and the residue was distilled in vacuo to give $37.0 \mathrm{~g}(54 \%$) of the base which was not homogenous (GLC). It was purified via hydrochloride, m.p. $194-195^{\circ} \mathrm{C}$ (after washing with 2-propanol). After liberation and drying, the base was obtained as a colourless liquid, b.p. $100-110^{\circ} \mathrm{C} / 130 \mathrm{~Pa}$; yield $29.1 \mathrm{~g}(42 \%)$. For $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}$ ($171 \cdot 2$) calculated: $84 \cdot 16 \% \mathrm{C}, 7 \cdot 65 \% \mathrm{H}, 8 \cdot 18 \% \mathrm{~N}$; found: $84 \cdot 20 \% \mathrm{C}, 7 \cdot 61 \% \mathrm{H}, 8 \cdot 29 \%$ N. ${ }^{1} \mathrm{H}$ NMR spectrum ($\delta, \mathrm{CDCl}_{3}$): $2.31 \mathrm{t}, 1 \mathrm{H}(J=2, \mathrm{C} \equiv \mathrm{CH}) ; 2.87 \mathrm{t}, 2 \mathrm{H}\left(J=6, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.98 \mathrm{t}, 2 \mathrm{H}$ $\left(J=2, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 3.55 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{C} \equiv \mathrm{C}\right) ; 3.77 \mathrm{~s}\left(\mathrm{NCH}_{2}\right) ; 7.00-7.08 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5)$ and $7.05-7.20 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-8\right.$ aromat.). IR spectrum $\left(\mathrm{CHCl}_{3}\right): 3300 \mathrm{~cm}^{-1}$ (s) for $\mathrm{C} \equiv \mathrm{C}$.

2-Methyl-2-(2-propynyl)-1,2,3,4-tetrahydroisoquinolinium iodide, m.p. $159-160^{\circ} \mathrm{C}$ (2-propanol). For $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{IN}$ (313.2) calculated: $49 \cdot 86 \% \mathrm{C}, 5 \cdot 13 \% \mathrm{H}, 40 \cdot 52 \% \mathrm{I}, 4.47 \% \mathrm{~N}$; found: $49 \cdot 47 \% \mathrm{C}, 5 \cdot 13 \% \mathrm{H}, 40 \cdot 41 \% \mathrm{I}, 4 \cdot 27 \% \mathrm{~N}$.

2-Methyl-2-(2-propynyl)-1,2,3,4-tetrahydroisoquinolinium bromide, m.p. $188-189^{\circ} \mathrm{C}$ (ben-zene-ethanol $4: 1$). For $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrN}$ ($266 \cdot 2$) calculated: $58.66 \% \mathrm{C}, 6.06 \% \mathrm{H}, 30.02 \% \mathrm{Br}, 5 \cdot 26 \% \mathrm{~N}$; found: $58.72 \% \mathrm{C}, 6.04 \% \mathrm{H}, 29 \cdot 86 \% \mathrm{Br}, 5 \cdot 16 \% \mathrm{~N}$.

2-(2-Propynyl)-1,2,3,4-tetrahydroisoquinoline picrate, m.p. $151-152^{\circ} \mathrm{C}$ (ethanol). For $\mathrm{C}_{18} \mathrm{H}_{16}$. $\mathrm{N}_{4} \mathrm{O}_{7}(400 \cdot 4)$ calculated: $54 \cdot 00 \% \mathrm{C}, 4 \cdot 03 \% \mathrm{H}, 14 \cdot 00 \% \mathrm{~N}$; found: $53 \cdot 85 \% \mathrm{C}, 4 \cdot 12 \% \mathrm{H}, 13 \cdot 70 \% \mathrm{~N}$.

Table IV
${ }^{1} \mathrm{H}$ NMR spectra of alcohol ${ }^{a} X-X I I I\left(\delta, \mathrm{CDCl}_{3}\right)$

XIa		3.25 s	$\begin{gathered} 2 \cdot 48 \mathrm{t} \\ J=6 \end{gathered}$	$1.58-1.66 \mathrm{~m}$	$1.38-1.48 \mathrm{~m}$	$1.52 \mathrm{~s}, 6 \mathrm{H}\left(2 \times \mathrm{CH}_{3}\right)$
		2 H	2 H	4 H	2 H	
$X I b^{a}$	4.85 s	$\begin{gathered} 4.41 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 3.45-3.47 \mathrm{~m} \\ 4 \mathrm{H} \end{gathered}$	$1.65-2.00 \mathrm{~m}$		$\begin{aligned} & 1.65-2.00 \mathrm{~m}, 14 \mathrm{H}\left(\left(\mathrm{CH}_{2}\right)_{4} \text { and } \mathrm{H}-4, \mathrm{H}-5\right) ; \\ & 3.19 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{~N}^{+}\right) \end{aligned}$
XIc		$\begin{gathered} 3.34 \mathrm{~s} \\ 4 \mathrm{H} \end{gathered}$	$\begin{gathered} 2.48 \mathrm{~s} \\ 8 \mathrm{H} \end{gathered}$	$\begin{gathered} 1.56-1.60 \mathrm{~m} \\ 8 \mathrm{H} \end{gathered}$	$\begin{gathered} 1.38 \mathrm{~m} \\ 4 \mathrm{H} \end{gathered}$	$7.29-7.34 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-\beta) ; 8.12-8.15 \mathrm{~m}, 1 \mathrm{H}$ ($\mathrm{H}-\alpha$) $; 8.51-8.53 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-\gamma) ; 9.05 \mathrm{~d}$, $1 \mathrm{H}\left(\mathrm{H}-\alpha^{\prime}\right)$ of pyridine ring
$X I c^{\text {b }}$		$\begin{gathered} 4.67 \mathrm{~s} \\ 4 \mathrm{H} \end{gathered}$	$\begin{gathered} 3.55 \mathrm{~m} \\ 8 \mathrm{H} \end{gathered}$	$\begin{gathered} 1.96 \mathrm{~m} \\ 8 \mathrm{H} \end{gathered}$	$\begin{gathered} 1.68-1.80 \mathrm{~m} \\ 4 \mathrm{~N} \end{gathered}$	$3.24 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}^{+} \mathrm{CH}_{3}\right.$ piperidine rings); 4.52 s , $3 \mathrm{H}\left(\mathrm{N}^{+} \mathrm{CH}_{3}\right.$ pyridine ring); $8.21 \mathrm{dd}, 1 \mathrm{H}$ ($J=8.1, J=6, \mathrm{H}-\beta$); $8.96 \mathrm{~d}, 1 \mathrm{H}(J=6, \mathrm{H}-\gamma)$; $9.02 \mathrm{~d}, 1 \mathrm{H}(J=8.1, \mathrm{H}-\alpha) ; 9.41 \mathrm{~s}, 1 \mathrm{H}$ ($\mathrm{H}-\alpha^{\prime}$ pyridine ring)
XId		$\begin{gathered} 3.37 \mathrm{~s} \\ 4 \mathrm{H} \end{gathered}$	$\begin{gathered} 2.52 \mathrm{t} \\ 8 \mathrm{H} \\ J=5.4 \end{gathered}$	$\begin{gathered} 1.60-1.65 \mathrm{~m} \\ 8 \mathrm{H} \end{gathered}$	$\begin{gathered} 1.41-1.43 \mathrm{~m} \\ 4 \mathrm{H} \end{gathered}$	$\begin{aligned} & 7.66-7.68 \mathrm{~m}, 2 \mathrm{H}(\mathrm{H}-\beta) ; 8.61-8.63 \mathrm{~m}, 2 \mathrm{H} \\ & \text { (} \mathrm{H}-\alpha \text { pyridine ring) } \end{aligned}$
XIe	$\begin{gathered} 5 \cdot 2 \mathrm{t} \\ J=1.8 \end{gathered}$	3.31 s	2.52 m	$1.60-1.66 \mathrm{~m}$	1.43 m	
	1 H	4 H	$\checkmark 8 \mathrm{H}$	8 H	4 H	
XIIa	$\begin{gathered} 4.40 \mathrm{t} \\ J=6.6 \\ 1 \mathrm{H} \end{gathered}$	$\begin{gathered} 3.39 \mathrm{~d} \\ J=5.6 \\ 2 \mathrm{H} \end{gathered}$	2.68 t 4 4 H	$1.65-1.75 \mathrm{~m}$	$1.55-1.65 \mathrm{~m}$ 4 H	$\begin{aligned} & 1.65-1.75 \mathrm{~m}, 6 \mathrm{H}\left(\mathrm{H}-2 \text { and } \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \\ & 1.45-1.55 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 0.95 \mathrm{t}, 3 \mathrm{H} \\ & \left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=3.6\right) \end{aligned}$
$X I I b^{\text {a }}$		$\begin{gathered} 4.36 \mathrm{~s} \\ 2 \mathrm{H} \end{gathered}$	$\begin{gathered} 3.49-3.64 \\ 4 \mathrm{H} \end{gathered}$	1.74-	98 m	$\begin{aligned} & 3.16 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{~N}^{+}\right) ; 1.74-1.98 \mathrm{~m}, 16 \mathrm{H} \\ & \left(\left(\mathrm{CH}_{2}\right)_{4}, \mathrm{H}-4, \mathrm{H}-5\right) ; \end{aligned}$
XIII ${ }^{\text {c }}$		$\begin{gathered} 3.34 \mathrm{~s} \\ 8 \mathrm{H} \end{gathered}$	$\begin{aligned} & 2.51 \mathrm{~s} \\ & 16 \mathrm{H} \end{aligned}$	$1.58-1.64 \mathrm{~m}$	$\begin{gathered} 1.40-1.43 \mathrm{~m} \\ 8 \mathrm{H} \end{gathered}$	$7.81-7.89 \mathrm{~m}, 3 \mathrm{H}$ ($\mathrm{H}-\beta, \mathrm{H}-\gamma$ pyridine ring)

[^1]```
4-(1-Piperidinyl)-1-(3-pyridinyl)-2-butyn-1-ol (Xg)
```

Ethylmagnesium bromide was prepared from magnesium ( $2.4 \mathrm{~g} ; 100 \mathrm{mmol}$ ) and ethyl bromide ( $6.0 \mathrm{~g}, 55 \mathrm{mmol}$ ) in tetrahydrofuran ( 70 ml ). After gentle reflux for 30 min , 1-( 2 -propynyl)piperidine ( $6.15 \mathrm{~g} ; 50 \mathrm{mmol}$ ) in tetrahydrofuran ( 20 ml ) was added dropwise and the reflux was continued for 1.5 h . Then a solution of 3-pyridinecarbaldehyde ( $5.35 \mathrm{~g} ; 50 \mathrm{mmol}$ ) in tetrahydrofuran ( 20 ml ) was added dropwise and the mixture was refluxed for 3 h . The reaction was performed in an atmosphere of dry nitrogen. The tetrahydrofuran was evaporated in vacuo, the reaction mixture was decomposed with saturated ammonium chloride solution and extracted with ether. The ethereal layer was dried over sodium sulfate, and the solvent was evaporated. The residue, which turned into a semicrystalline mass on standing overnight, was spread on a porous tile (this removed the sirupy component better than filtration through a sintered glass), affording $4.8 \mathrm{~g}(41 \%)$ of slightly brownish crystals. Several crystallizations from cyclohexane (charcoal) afforded colourless crystals, m.p. $98-99^{\circ} \mathrm{C}$ (Tables II and IV). Alcohols $X a-f$ were prepared analogously. In the case of alcohol $X f$, the reaction mixture was not heated and was worked up after stirring at room temperature for 1.5 h . In the preparation of alcohols XIc-e the molar ratio ester: Grignard reagent was $1: 2$, for $X I I I$ this ratio was $1: 4$. Compounds XIc and XIe had to be purified by column chromatography on silica gel (benzene, benzene-ethanol), compounds $X I b$ and $X I I I$ were chromatographed on alumina (chloroform).

## 1-Acetoxy-1-phenyl-(4-(1-piperidinyl))-2-butyne ( $X h$ )

Acetic anhydride ( $0.37 \mathrm{ml} ; 4.2 \mathrm{mmol}$ ) was added to a solution of alcohol $X b(229 \mathrm{mg} ; 1 \mathrm{mmol})$ in pyridine $(0.6 \mathrm{ml})$ and the mixture was allowed to stand at room temperature for 2 days. Since considerable amount of the starting alcohol was still present (TLC), 4-dimethylaminopyridine $(30 \mathrm{mg})$ was added and the mixture was set aside for 12 h . After this time no starting alcohol was found. Pyridine was distilled off and the residue was filtered through a column of alumina (chloroform). Yield $126 \mathrm{mg}(46 \%)$ of pure compound $X h$ (Tables II and IV).

Elemental analyses were performed under supervision of Dr L. Helešic, NMR spectra were obtained under supervision of Dr P. Trška, mass spectrum was taken by Dr P. Mitera and IR spectra were recorded by Dr E. Janečková and Dr A. Kohoutová, Central Laboratories of this Institute.

## REFERENCES

1. Kruglikova R. I., Kamenov N. A.: Zh. Org. Khim. 2, 1227 (1966).
2. Neumeyer J. L., Cannon J. G.: J. Pharm. Sci. 51, 804 (1962).
3. Croxall W. J., Melamed S.: U.S. 2582748 (1952); Chem. Abstr. 46, 9578 (1952).
4. Kurbanov F. K., Kurbanov S. S., Kuchkarov A. B.: Uzb. Khim. Zh. 19, 35 (1975); Chem. Abstr. 85, 97599 (1976).
5. Biel J. H.: U.S. 2830048 (1958); Chem. Abstr. 52, 14709 (1966).
6. Papa D., Villani F. J., Ginsberg H. F.: J. Am. Chem. Soc. 76, 4446 (1954).
7. Janez Q. G. R., Ivanov E. S., Karajev S. F., Movsumzade M. M.: Izv. Vyssh. Ucheb. Zaved. Neft Gaz 25, 52 (1982); Chem. Abstr. 97, 201547 (1982).
8. Everett G. M., Blockus L. E., Shepperd J. M.: Science 124, 79 (1956).
9. Levy J., Michel-Ber E.: Therapie 22, 671 (1967).
10. Hazelhoff B., DeVries J. B., Dijkstra D., DeJong W., Horn A. S.: Arch. Pharmacol. 330, 50 (1985).
11. Will F., Dirr K., Kerber H.: Justus Liebigs Ann. Chem. 591, 177 (1955).
12. Reppe W.: Justus Liebigs Ann. Chem. 596, 38 (1955).
13. Waters J. A., Wiese G. A.: J. Am. Pharm. Assoc. 49, 112 (1960); Chem. Abstr. 54, 14113 (1960).
14. Houben-Weyl: Methoden der Organischen Chemie Bd. 5/2a, p. 545. Thieme, Stuttgart 1977.
15. Mannich C., Tsong Chang F.: Ber. Deut. Chem. Ges. 66, 418 (1933).
16. Stütz A., Granitzer W., Roth S.: Tetrahedron 41,5685 (1985).
17. Kurbanov F. K., Kuchkarov A. B., Kurbanov S. S.: Izv. Vyssh. Ucheb. Zaved., Khim. Khim., Technol. 17, 1584 (1974); Chem. Abstr. 82, 139914 (1975).
18. Nazarov I. N., Kruglikova R. I., Nikolajev G. M.: Z. Obshch. Khim. 29, 1859 (1955).
19. Kurbanov S. S., Kurbanov F. K., Kuchkarov A. B.: Deposited Doc. VINITI 744 (1974); Chem. Abstr. 86, 155445 (1977).
20. Kurbanov S. S., Kurbanov F. K.: Tr. Tashk. Politechn. Inst. 119, 37 (1974); Chem. Abstr. 84, 43787 (1976).
21. Mochalin V. B., Minervina T. C.: Zh. Org. Khim. 1, 1726 (1965).
22. Karaev S. F., Janez Q. G. R.: Zh. Org. Khim. 19, 2307 (1983).
23. Hennion G. F., Campbell J. M.: J. Org. Chem. 21, 791 (1956).

Translated by M. Tichý.


[^0]:    ${ }^{a}$ For $X e$ calculated: $13.62 \% \mathrm{~S}$, found: $13.56 \% \mathrm{~S}$; ${ }^{b}$ for $X f$ calculated: $13.62 \% \mathrm{~S}$, found: $13.80 \% \mathrm{~S}$;
    ${ }^{c}$ bath temperature; ${ }^{d}$ methiodide of $X I b ;{ }^{e}$ trimethiodide of $X I c ;{ }^{5}$ dimethiodide of $X I e ;{ }^{s}$ reported ${ }^{18}$ b.p. $120^{\circ} \mathrm{C} / 600 \mathrm{~Pa} ;{ }^{h}$ methiodide of $X I I b ;{ }^{i}$ tetramethiodide of $X I I I .2 \mathrm{H}_{2} \mathrm{O}$.

[^1]:    ${ }^{a}$ methiodide, in $\mathrm{CD}_{3} \mathrm{OD} ;{ }^{b}$ trimethiodide, in $\mathrm{CD}_{3} \mathrm{OD}$; ${ }^{c}$ in $\mathrm{CD}_{3} \mathrm{OD}$

